17May 2018

I googled the question “ should I charge my phone to 100”. Google returned 467 million results. From folks offering opinions on “how to properly charge” to others calling on “science”, there seems no obvious consensus in the media. Yet,  unlike views on more socially charged topics, this question ought to be a lot simpler and ought to have a clear cut answer. Let’s explore.

I start with an easy experiment. Take two batteries. Charge one of them continuously to 100% and discharge it back to zero. Repeat. Take the second battery and charge it only to 90%. Discharge it. Repeat. Now compare the two batteries.  Are there differences? the answer is yes, there is difference. The battery that was charged to 100% will age considerably faster. 

What do I mean by aging? The technical term is “cycle life.” In practice, it means that the battery charged to 100% will lose its ability to store electric charge faster than the other battery. The difference between the two batteries can vary between 100 and 300 charge cycles.

So is that good? Well, it depends on what your use is. The definition of “good” is relative.

For a smartphone, my answer is “I really don’t care.” 

For an electric vehicle, my answer is “yes, it is better, but may be only marginally.”

For energy storage batteries used by electric utilities, my answer is “yes, absolutely.”

Now, let’s dive into the details.

A smartphone battery usually lives about 500 to 800 cycles. By cycles, I mean the number of times you will be able to charge it (to 100%) and discharge it before it becomes old and useless. Some smartphone manufacturers do better than others. Apple’s and Samsung’s batteries tend to be closer to 500 cycles. Others like LG, Sony and Huawei tend to be closer to 800 cycles. 

Let’s convert cycles to real-life years. Most smartphones are charged once a day. So 800 cycles is about 2 years of use before your battery becomes old. That corresponds well with the average time for consumers to upgrade. But wait, you might say you plan to keep your smartphone for longer than 2 years. What should you do?

Naturally, one option is to spend $30 to $50 once your battery is depleted and get your phone serviced after 2 years. The other option is to charge your phone to only 80% or 90% instead of 100%. That exercise will probably get you an extra year of usage.

But that is not the only way to get more longevity. You probably don’t know that if you use a small AC adapter instead of a bigger one, you will probably get the same benefit. For this method, look for an AC adapter that is rated 5 Watts, or use the USB port in your PC to charge you handset. And that applies to iPhones or Android phones. What do you give up? You are giving up fast charging. If you charge your handset overnight, then you really don’t care.

A self-serving plug for Qnovo: Smartphones with intelligent charging algorithms will take care of longevity issues for you so you really don’t have to think about this question and its answer. 

Now, let’s talk about electric vehicles. Should you top off the battery in your electric vehicle (EV)? First, it is important to know that EV manufacturers (from GM and Tesla to Nissan and VW) already limit the charging of the car battery to somewhere near 80%. The 100% that you read in your dashboard is actually 80% of the what the battery is rated for. That figure usually is sufficient to meet the warranty terms of the vehicle, often 100,000 miles or 10 years.

If you are leasing your car, then you really don’t care. Your lease will expire long before any meaningful battery aging sets in. But if you purchased your EV and plan to keep for a long time, then you may have an incentive to not top off your battery.

But wait, that is also not the only way to get more longevity. Every time you use a supercharger or DC fast-charging, you are causing serious damage to the battery. So instead, try to avoid using superchargers. This is particularly acute for the Panasonic batteries used in some of the Tesla models.

Lastly, I will add a few final words about electric utilities and batteries they use. These are complex systems that are slated to operate for at least 20 years! They are also very expensive assets that cost millions of dollars. So longevity is a serious matter. Naturally, users have no say in how these batteries get charged. Utilities and battery manufacturers do watch over these batteries so that they can last for a long time.