Electric vehicles

12Aug 2020

Three factors contribute to the mass penetration of electric vehicles:

  • Driving range that eliminates range anxiety;
  • Lower cost batteries for affordable vehicles;
  • Availability of fast charging.

A common denominator is the battery’s energy density: it is the amount of electrical energy per unit volume (or per unit weight) that a rechargeable battery can store. Energy is measured in units of kWh. Hence energy density is in units of Wh per liter (Wh/l), or Wh per kg (Wh/kg). State-of-the-art energy density figures for lithium-ion batteries stand today near 700 Wh/l and 300 Wh/kg.

Continue reading
Share this post
02Jul 2020

Tesla’s market valuation hit today $225 Billion, more than the valuation of any other auto manufacturer, highlighting the importance of the lithium-ion battery to our economies.

The battery is the product differentiator for electric vehicles, stationary energy storage and many consumer devices. Each category is pushing the specifications of the battery — and they all share similar themes: more charge capacity, faster charging, battery longevity, less weight, less cost, and absolute safety!

Continue reading
Share this post
09Mar 2020

Is it true that electric vehicles (EV) need 800-V battery packs for ultrafast charging? Is it true that the Porsche Taycan uses 800-V packs to enable ultrafast charging? Why did GM announce that its new battery platform will support 800 V? Let’s find out.

Let’s start with two essential ingredients required for ultrafast charging:

1. A charging station that is capable of providing a lot of electric power;

2. The ability for the battery to accept the extra charging power without being damaged or degraded.

Continue reading
Share this post
30Dec 2019

Whether related to the stock market, presidential elections or climate, December is the month to make predictions for the coming year and decade. So what battery trends should we expect for the upcoming 2020-2030 decade?

1.Lithium-ion batteries will power more applications — electrification of everything:  The 2019 Nobel Prize in Chemistry highlights the progress lithium-ion batteries achieved in the past four decades. From a laboratory experiment in the 1970s, they are now ubiquitous in consumer devices. Increasingly, they are making inroads in transportation and grid storage applications. 

Continue reading
Share this post
09Oct 2019

I was beaming with delight when I read that John Goodenough, Stanley Wittingham and Akira Yoshino received the 2019 Nobel Prize in Chemistry for the “development of lithium-ion batteries.”

Wittingham’s initial work on batteries dates back to the 1970s while at Exxon. Goodenough’s seminal work on LCO cathodes at Oxford was published in 1980. Yoshino’s contributions on the graphite anode came in 1980s at Asahi Kasei in Japan. Sony converted their ideas into the first commercial lithium-ion battery product in 1991.

courtesy: The Royal Swedish Academy of Sciences
Continue reading
Share this post