Page View:
Site View (Blog Template):
« Previous
Next »
August 16, 2017

VOLTS THAT WILL ZAP YOUR BATTERY’S LIFE

Chemistry
Electronics & Systems
Fast Charging
Mobile Devices
Nadim Maluf

School started this week for most of us so it is time to resume the posts. Today’s post continues with insight into the subtleties of the lithium-ion battery. It is surprising how a simple device, with only two contacts, can be so intriguing and complex.

As summer nears to an end, several smartphone makers ready their newest and greatest devices for launch. Samsung announces their Note 8 on 23 August. LG is announcing their flagship V30 a week later. And we are not forgetting Apple as they ready their newest iPhones in September.

All of these new devices will come with amazingly beautiful and large displays, top-of-the-line processors and of course, batteries to power them. At an expected price point in excess of $700, consumers are keeping their smartphones for two or even three years. So will their batteries last that long?

We will examine here one of the parameters that impact the longevity of the battery…and give you some tidbits on what you can do to keep your battery fresh for longer than average. Today’s post is on voltage. Voltage is the alt-nature to state-of-charge (SOC). This is very much the principle of operation of the fuel gauge — how you get to read at the top of your screen the percentage of remaining battery life.

When I say voltage, I mean the maximum voltage that the battery will see. It also determines the maximum available capacity in mAh. Look at the label of a battery and you will observe a maximum voltage during charge and maximum capacity for that battery. Most state-of-the-art batteries operate at a maximum voltage around 4.35 V or 4.4 V. This is also the voltage that corresponds to a 100% battery reading.

If you choose to charge your smartphone to a lesser percentage, say to only 90%, then the battery voltage stops at a lower value. For a battery that is rated 4.35 V, 100% corresponds to 4.35 V. At 95%, the voltage is 4.30 V. And at 90%, the voltage is 4.25 V. These are small differences in voltage values, but significant differences in capacity.

Let’s take a particular example with a battery having a maximum capacity of 3,100 mAh at 4.35 V. Therefore, at 4.25 V, the maximum available capacity becomes a little over 2,800 mAh.

You are now wondering: why would anyone want to do that?

The answer is: Battery longevity. If you don’t have the best battery, or your smartphone manufacturer is not putting the best battery management intelligence on your device, then you ought to be very concerned whether your battery will last you more than one year. Battery issues after 6 months or one year are a significant cause for warranty returns.

Let’s back it up with some measured data.

The following chart shows the maximum available capacity for a battery rated at 3,100 mAh at 4.35 V. At this voltage, this battery will only last about 400 cycles, or about a year. You will complain about the loss of use much before that.  The brown line shows that your battery has lost 250 mAh of capacity after 6 months….that’s about 2 hours of use time. Ouch!

Now, let’s look at the case where the smartphone is charged to only 95%. That is a maximum available capacity of 3,000 mAh instead of 3,100 mAh. Now follow the dark green curve in the chart. It fades at a much slower rate than the brown line. In fact, it crosses over the brown line at about 300 cycles, or about 10 months. In other words, after 10 months, it offers more capacity. This illustrates the tradeoff between voltage and longevity.

A smartphone maker who has implemented advanced intelligence on their battery (like Qnovo’s) will not suffer from this ailment. But if you suspect that your device does not have such intelligence, then you will do yourself a big favor by charging your battery to a maximum of 95% or even lower if you can.

To view the blog content,
please fill out the form below.

Error

Error

Error

Error

Error

Error

Thank you! Your submission has been received. Now you can be able to view all of our exclusive blog contents using your email address.
Oops! Something went wrong while submitting the form.

Learn more about Qnovo

Want to be a part of the electrification revolution? For a more intelligent and resilient technological future, this is your destination.
Learn More