Energy Storage

30Dec 2019

Whether related to the stock market, presidential elections or climate, December is the month to make predictions for the coming year and decade. So what battery trends should we expect for the upcoming 2020-2030 decade?

1.Lithium-ion batteries will power more applications — electrification of everything:  The 2019 Nobel Prize in Chemistry highlights the progress lithium-ion batteries achieved in the past four decades. From a laboratory experiment in the 1970s, they are now ubiquitous in consumer devices. Increasingly, they are making inroads in transportation and grid storage applications. 

Continue reading
Share this post
31Mar 2017

We, that’s all of us on this planet, buy every year 1.6 billion smartphones. It works out to one new smartphone every year for every four living human beings on this planet. Cumulatively, we own and use 4 billion smartphones around the world. Every region of the world, rich or poor, is buying smartphones. Many developing nations in the Middle East, Africa, and Asia are growing their smartphone subscriptions at a fast rate. Ericsson reports that by 2021, there will be 6.3 billion smartphone subscriptions, that’s nearly every man, woman and child around the world. Impressive!

Continue reading
Share this post
23Aug 2016

Tesla Motors announced today upgraded versions of the Model S and X boasting 100 kWh battery packs, up from 90 kWh used in their earlier top-of-the-line electric vehicles. One hundred kilowatt-hours sounds like a lot, and it is, but I bet that many readers don’t have an intuitive sense of this amount of energy. This is what this post is for.

First, a kilowatt-hour is a unit of energy, not power, and is most commonly used in electricity. To put it in perspective, an average home in California consumes about 20 kWh of electrical energy per day, so this 100-kWh fully-charged Tesla battery would cover this home’s needs for about 5 days.  Now that’s great if you like to go off-grid.

Continue reading
Share this post
19Aug 2016

As I pondered over the past couple of weeks what might be a befitting topic for this 100th post, a group at MIT announced that they discovered how to make batteries with double the energy. Of course, the operative word in the press release was “first-prototype” which means that it might be a long while before, that is if, we see commercial deployment. However this announcement was the catalyst to focus this post on the state of the lithium-ion battery: In other words, if we ignored future inventions, what is the best that we can expect from the lithium-ion battery today across a number of applications.

Continue reading
Share this post
17Jun 2016

I will jump ahead in this post to discuss the merits of different lithium-ion chemistries and their suitability to energy storage systems (ESS) applications. Naturally, this assumes that lithium-ion batteries in general are among the best suited technologies for ESS. Some might take issue with this point — and there are some merits for such a discussion that I shall leave to a future post.

Continue reading
Share this post
  • 1
  • 2