Fast charging

22Nov 2016

Qualcomm announced this week their 4th generation Quick Charge™ technology to be available in their upcoming Snapdragon 835 chipset. Quick Charge™ 4 continues to build on making fast charging an integral part of modern smartphones and consumer devices. In this latest generation, Qualcomm adds a number of key features, in particular, higher efficiency in delivering the power from the wall socket to the device, more power available for charging faster, and better thermal management. I applaud the continued evolution of Qualcomm’s QC technology.

Continue reading
Share this post
19Jul 2016

This post includes contributions from Robert Nalesnik. I discussed in the past how fast charging requires two components: i) power delivery – that means getting extra electrical power from the wall socket to the battery and ii) battery management – that means making sure you don’t destroy the battery’s lifespan with all the extra power.

How much more power do you need? Quite a bit more if you want to charge considerably faster. It’s like your car engine: if you want to go faster then you will consume more gas. For a typical smartphone, power levels go up from the conventional 5 Watts to 15 or even close to 20 Watts in some cases.

Continue reading
Share this post
12Jul 2016

yes, you guessed right: they both spell BAD news for your smartphone battery.

Pokemon Go, the app that catapulted over this past weekend to the #1 download spot for both iOS and Android apps simultaneously runs the cellular radio (3G, 4G, LTE) along with the GPS locator and the screen. No wonder users are reporting dead batteries after a couple of hours, and several are carrying power bricks as they roam the streets to recharge their dying batteries.

Continue reading
Share this post
01Jul 2016

Sleep is an essential function of life. Tissue in living creatures regenerate during deep sleep. We, humans, get very cranky with sleep deprivation. And cranky we do get when our battery gets depleted because we did not give our mobile device sufficient “sleep time.”

I explained in a prior post the power needs in a smartphone, including the display, the radio functions…etc. If all these functions are constantly operating, the battery in a smartphone would last at most a couple of hours. So the key to having a smartphone battery last all day is having down time. So by now, you have hopefully noticed how the industry uses “sleep” terminology to describe these periods of time when the smartphone is nominally not active.

Continue reading
Share this post
17May 2016

A young woman, Anna Crail, was flying on 19 March of this year on an Alaska Airlines flight from Seattle to Honolulu. About 90 minutes prior to landing, her iPhone 6 suddenly broke out in flames causing panic in mid flight. The fire was rapidly extinguished by the flight attendants, but not without leaving the airline and the FAA searching for answers. This is one of several safety-related battery incidents that are becoming increasingly common. There are countless reports on hoverboards that are catching fire. While safety-related incidents involving Apple iPhones appear to be sparse in the media, there are increasing reports of Android-type mobile devices posing serious safety hazards, especially in Asian geographies. This post provides first insights on the factors that impact the safety of the lithium-ion battery in mobile devices.

Continue reading
Share this post