Electric vehicles

24Sep 2014

For those of you who are not familiar with ARPA-E, it is an acronym that stands for Advanced Research Projects Agency – Energy. It is an agency of the U.S. Department of Energy, and was formed in 2007 by the America COMPETES Act with the intent to emulate the success of its counterpart, DARPA, at the Department of Defense. Its charter is to promote advances in sciences related to energy, translate discoveries and inventions into innovations, and accelerate advances that industry is not likely to undertake.

From its early days, ARPA-E identified energy storage, and in particular battery technologies, as an area of focus and investment. Since 2009, ARPA-E has invested tens of millions of dollars into this research area, of which significant funds went to support research into new battery materials. In 2009, the White House announced that they would make $2.4 Billion in grants available for the development of batteries and power drive components for electric vehicles, installation of charging stations and other programs aimed at advancing the US EV industry.

Several programs benefited from this funding over the past five years. We see far more EVs on the road, especially here in California, than we ever did in the past. It helps immensely that the State of California has offered an additional set of incentives in parallel.

However, the one area that showed little progress if any despite the flow of funds is the promise of new and affordable batteries with longer driving range, in other words, larger capacity. If one were to assess a return on investment by the US government and other US-based entities, private or public, we find that we have little to show for. There are no breakthrough materials on the horizon; there is little if no hope for a meaningful manufacturing base of batteries in the US – contrary to what the White House and ARPA-E would like us to believe; and there is a long list of US-based startup companies developing batteries and battery materials that are struggling against fierce competition from the Asia battery giants such as Samsung and LG Chem in Korea, and ATL, Lishen and several others in China.

Let’s face it, the US cannot be a manufacturing base for batteries. Our cost structure is incompatible with the economic and financial constraints of battery manufacturing. Battery manufacturing requires billions in capital yet has to live on very thin profit margins. So let’s stop investing our tax dollars in funding research in new battery materials so that Asian companies can then use the intellectual property for their own benefit (or purchase it for a dime on the dollar).

Instead, the US should focus its investments on system-level innovation. Tesla purchases batteries from Panasonic. These are similar batteries used in your notebook PC with a cost of about a buck or less each. Not an exciting business. Yet, Tesla integrates these batteries into a more complex system with far better margins – and far more difficult for Asia to copy. Tesla is only one example; the same concept applies to mobile devices, and industrial or grid-level energy storage.

Share this post
23Sep 2014

I love my electric vehicle, or EV, as we affectionately call our electric cars here in California. I love that it is quiet. I love its fast pickup from a stop. I love that it requires practically zero service: no oil change; no transmission service; no timing belts. Of course, I love too that it is eco-friendly and driving in the carpool lane. I am bullish on the future of electric vehicles, but first, the technology has to evolve a little more to give the consumer less anxiety, the topic of today’s writing.

No, it is not a Tesla. It is not a Leaf. I am one of the early adopters of a Ford Focus Electric. It looks like a regular Ford Focus so it does not stand out in traffic. I nominally get about 80 miles of range which includes a lot of freeway driving…my normal daily commute. Slower driving in stop-and-go traffic increases my range to about 100 miles. Shave 10 or 15 miles during our mild California winters.

My vehicle is powered by a 24 kWh lithium-ion battery pack that is manufactured by LG Chemical, but in reality, only about 19 or 20 kWh are available to me. That’s because to provide a 100,000-mile warranty, the battery has to reach 100,000 divided by 80 miles = 1,250 cycles minimum. So battery manufacturers and car makers choose to reduce the capacity of the battery to gain cycle life. Remember the whack-a-mole strategy from earlier posts. Using the water analogy, if you don’t fill up the water bucket to the top, you can fill it more times over its life. Tesla Motors, Leaf and virtually every car maker employs this strategy. For the time being, it’s ok, but that has to be addressed over time in order to make electric cars more affordable for the broad population.

When I first bought my car, my range anxiety was high. The car dashboard displayed how many miles of driving I had available in the tank, ehem, battery. I charged my car overnight, and I started my morning with about 80 miles. By the time I got to work, the dashboard showed less than 60 miles.  I was nervous every time my dashboard dropped below 50 miles, so I charged as frequently as I could. That’s range anxiety. 

Now, nearly a year and half later, my behavior has changed drastically. I drive my car down to 10 or even 5 miles left in the battery. I plan my route. I know my destination and I know my return route. Keeping 50 or more miles for insurance does not make any more sense. I became comfortable with the given range of 80 miles and I use it effectively. I consistently get about 80 miles, and in the time since I bought it, my comfort level increased and my trust in my dashboard’s range estimate has increased. Of course, my maximum driving range was still limited to the greater Bay Area. I cannot drive my car to, say, Los Angeles, but I do use nearly every mile available to me in battery.

However, my range anxiety got replaced with something else: Charging anxiety. You see, if I am comfortable taking my battery down to nearly zero, I need to know that I am close to a charging outlet when I stop. Good news here! The San Francisco Bay Area has lots of charging outlets. But the problem is the speed of charging. If my battery is near zero, it takes a whopping 20 hours to charge it at 120-Volt, and a mere 4 to 5 hours using the 240-Volt chargers. Ouch! That is not acceptable. That is at the core of anxiety in battery-powered cars, phones, or anything else. We need to charge them fast, and I mean really fast….As fast as filling up your gas tank at the gas station. 

If you look at what Tesla Motors is doing and what Elon Musk keeps advertising, none of it is about extending the range of their cars. Their publicized priorities are about building cars for the masses (in other words, lower price point) and secondly about charging their cars fast, in half an hour or so.  

Fast charging…we need it. Remember that!

Share this post
16Sep 2014

1. JUST A SIMPLE INTRODUCTION.

If you are a consumer who has wondered why your lithium-ion battery in your mobile device fails your expectations, this blog is for you. If you are technically savvy but you are not a chemist, and often wondered how this lithium-ion battery works the way it does, then this blog is for you. If you are just curious about how to get more out of your lithium-ion battery, then again, this blog is for you.

You have searched the internet for information on the battery inside your gizmo, how it works, how you should take care of it, what the fancy technical terms really mean, and what the manufacturer is promising you and what you are really obtaining….and I am sure you often felt frustrated because, well, little of it made sense to you. You are not alone.

The fact is batteries have for a long time been a forgotten corner of technology. Before mobile devices became anchored in our daily lives, the battery meant that blackbox under the hood of our cars. Batteries did not evoke “clean” or “high-tech.” We wanted a low-cost battery that cranked our engines even in the coldest days of winter.

Then came mobile devices, and now electrified vehicles… and things got more complicated. Everyone had an opinion, or a theory. “No, don’t discharge to empty!” or “Beware, it has a memory effect.” The fact is most of this advice is not based on real science and has little merits. True battery experts are hard to find…universities don’t graduate enough of them, and they are in high demand.

This blog is intended to be read either as individually independent posts, or collectively as one continuous reading. The titles are summarized in the Table of Contents on the right hand side. Start with whichever topic you would like depending on your fluency level.

In the next post, we will start with the basics: What the terms really mean when one describes a battery.

Share this post