Chemistry

18Oct 2016

State-of-the-art lithium-ion batteries, whether used in smartphones or electric vehicles, all rely on the same fundamental cell structure: two opposing electrodes with an intermediate insulating separator layer, with lithium ions shuffling between the two electrodes.

The positive electrode during charging, usually called the cathode, consists of a multi-metal oxide alloy material. Lithium-cobalt-oxide, or LCO, is by far the most common for consumer electronic applications. NCM, short for lithium nickel-cobalt-manganese oxide, also known as NMC, is gradually replacing other materials in energy storage and electric vehicle applications. LCO and NCM have a great property of storing lithium ions within their material matrix. Think of a porous swiss cheese: the lithium ions insert themselves between the atomic layers.

In contrast, the anode, or negative electrode during charging, is almost universally made of carbon graphite. Carbon historically was and continues to be the material of choice. It has a large capacity to store lithium ions within its crystalline matrix, much like the metal oxide cathode.

So how do manufacturers increase energy density? In some respects, the math is simple. In practice, it gets tricky.

Energy density equals total energy stored divided by volume. The total stored energy is dictated by the amount of active material, i.e., the available amount of metal oxide alloy as well as graphite that can physically store the lithium ions (i.e., the electric charge). So battery manufacturers resort to all types of design tricks to reduce the volume of inactive material, for example, reducing the thickness of the separator and metal connectors. Of course, there are limits with safety topping the list. To a large extent, this is what battery manufacturers did for the past 20 years — amounting largely to about a 5% increase annually in energy density.

But once this extra volume of inactive material is reduced to its bare minimum, increasing energy density gets tricky and challenging. This is the difficult wall that the battery industry is facing now. So what is next?

There are two potential paths forward:

1.  Find a way to pack more ions (i.e., more electric charge) within the electrodes. This is the topic of much research to develop new materials capable of such feat. But any such breakthrough is still several years away from commercial deployment, leaving the second option to….

2.  Increase the voltage. Since energy equals charge multiplied by voltage, increasing the voltage also raises the amount of energy (remember that energy and charge are related but are not commutable). This is the object of today’s post.

The battery industry raised the voltage a few years back from a maximum of 4.2 V to the present-day value of 4.35 V. This was responsible for adding approximately 4 to 5% to the energy density. A new crop of batteries is now beginning to operate at 4.4 V, adding an additional 4 to 5% to the energy density. But that does not come without some serious challenges. What are they?

First, there is the electrolyte. It is a gel-like solvent that imbibes the inside of the battery. Short of a better analogy, if ions are like fish, then the electrolyte is like water. It is the medium within which the lithium ions can travel between the two electrodes. As the voltage rises, it subjects the electrolyte to increasingly higher electric fields causing its early degradation and breakdown. So we are now seeing a new generation of electrolytes that can in principle withstand the higher voltage — albeit, we see in our lab testing that some of these electrolyte formulations are responsible for worse cycle life performance. This is a first example of the compromises that battery designers are battling.

Second, there is the structural integrity of the cathode. Let’s take LCO as an example. If we peer a little closer into the cathode material (see the figure below), we find a crystal structure with layers made of cobalt and oxygen atoms. When the battery is fully discharged, the lithium ions occupy the vacant space between these ordered layers. In fact, there is a proportion of lithium ions to cobalt and oxygen atoms: there is one lithium ion for every one cobalt and two oxygen atoms.

lco

courtesy of visualization for electronic and structural analysis (VESTA)

As the battery is charged, the lithium ions leave the cathode to the anode vacating some of the space between the ordered layers of the LCO cathode. But not all the lithium ions can leave; if too many of them leave, then the crystal structure of the cathode collapses and the material changes its properties. This is not good. So only about half of the lithium ions are “permitted” to leave during charging. This “permission” is determined by, you guessed it, the voltage. Right about 4.5 V, the LCO crystal structure begins to deteriorate, so one can easily see that at 4.4 V, the battery is already getting too close to the cliff.

Lastly, there is lithium plating. High energy-density cells push the limit of the design and tolerances in order to reduce the amount of material that is not participating in the storage. One of the unintended consequences is an “imbalance” between the amount of cathode and anode materials. This creates an “excess” of lithium ions that then deposit as lithium metal, hence plating.

These three challenges illustrate the increasing difficulties that battery manufacturing must overcome to continue pushing the limits of energy density. As they make progress, however, compromises become the norm. Cycle life is often shortened. Long gone are the days of 1,000+ cycles without intelligent adaptive controls. Fast charging becomes questionable. In some cases, safety may be in doubt. And the underlying R&D effort costs a lot of money with expenses that are stretching the financial limits of battery manufacturers without the promise of immediate financial returns in a market that is demanding performance at a the lowest possible price.

It is great to be a battery scientist with plenty of great problems to work on…but then again, may be not.

15Sep 2016

A recent article published by The Verge attempted to explain the science behind the exploding Samsung Note 7 batteries. The article touches on several important aspects of battery safety but the handwaving did not really talk about much science. So this post will address a failure mode of lithium-ion batteries and how defects can form during manufacturing with catastrophic results.

One of my earlier posts described the inner structure of a lithium battery. In a nutshell, there are alternating material layers that form the basic structure of the battery: a sandwich of two electrodes, called the anode and the cathode, with an insulating separator between them. During manufacturing, these layers are assembled then rolled together like a cigar before they are packaged into a protective sleeve. This is a gross simplification but highlights the basic structure and assembly of the lithium-ion battery. With some minor exceptions, the manufacturing is primarily an assembly process, and does not resemble in any form the manufacturing processes used in semiconductor devices.

The first figure below shows a rudimentary drawing of the basic structure of the lithium-ion cell. The graphite anode, shown in black, sits counter to the cathode, shown in green. The separator, shown in blue, is sandwiched between the two electrodes and acts as an insulator, in other words, its primary function is to prevent internal electric shorts between the two conductive electrodes. We all know that electric shorts are not good!

One of the basic requirements in the design of the battery is for the graphite anode to physically extend beyond the edges of the cathode. In other words, the anode is wider than the cathode at every point, especially the long edges of the sheets. This is needed to maintain safety within the cell and prevent the formation of lithium metal. Intuitively, there has to be more anode material than cathode material to absorb all the lithium ions. When the anode is not properly sized, the excess lithium ions will deposit as lithium metal, and that is called lithium plating. If you would like to dig a little deeper into lithium plating, this earlier post will shed some additional insight.

In practical terms, the anode is wider than the cathode ever so slightly, only a few percents. Any extra width of the anode does not participate in energy storage. In other words, the extra width of the anode is required for safety reasons, but does not contribute to charge storage. So battery designers go to extremes to optimize the extra width of the anode for the requisite safety.

As energy density increases, these battery designers have limited choices, one of them is to reduce the width margin of the anode. This means that the additional width of the anode relative to the cathode is now at its bare minimum. Any errors in manufacturing that jeopardize this extra overlap may have dire consequences.

battery safety figure 1

So now let’s examine one particular manufacturing defect where a slight misalignment between the anode and cathode occurs during the assembly process. The figure below shows the same structure as above but now the anode layer is shifted ever so slightly to the right.

battery safety figure 2

At the misaligned edge, the requisite overlap of the anode relative to the cathode is now diminished or even possibly vanished. The A/C ratio at this locale drops below the requisite limit for ensuring safety. The result, as you expected, is the onset of lithium metal at this edge. The lithium metal forms on the anode edge. As the lithium metal grows in size and thickness, it ultimately punctures the separator and causes an electrical short between the anode and cathode. Boom! we now have a catastrophic failure.

battery safety figure 3

So this begs the question: why did Samsung release new software that limits the maximum charge in the faulty Galaxy Note 7 to only 60% of maximum? It is because the risk of lithium metal plating heavily depends on the voltage and the maximum charge in the battery. This is evident in the voltage chart of this earlier post: the higher the voltage, i.e., the higher maximum allowed charge, the higher the risk of lithium metal plating.

I will close by reiterating one final thought. The tolerance requirements in the manufacturing of lithium ion batteries have risen sharply with increasing energy density. Short of using new materials (that still do not exist in commercial deployment), increasing the energy density means reducing all the extra space inside the battery that is not made of anode and cathode materials. These are the only two materials that store energy. Everything else is just overhead…i.e., dead weight. They are still needed for other functions and safety, but they do not contribute to storing electrical charge. So battery designers keep reducing this overhead and in the process, make the manufacturing tolerances every so tight….and that is a recipe for many disasters to come unless we start adding a lot more intelligence to the battery to avoid and mitigate these undesired situations.

17Jun 2016

I will jump ahead in this post to discuss the merits of different lithium-ion chemistries and their suitability to energy storage systems (ESS) applications. Naturally, this assumes that lithium-ion batteries in general are among the best suited technologies for ESS. Some might take issue with this point — and there are some merits for such a discussion that I shall leave to a future post.

Made of two electrodes, the anode and the cathode, it is the choice of the cathode material that determines several key electrical attributes of the lithium-ion battery, in particular energy density, safety, longevity (cycle life) and cost. The most commonly used cathode materials are Li cobalt oxide (known as LCO), Li nickel cobalt aluminum (NCA), Li nickel manganese (NCM), Li iron phosphate (LFP) and Li manganese nickel oxide (LMNO).

EnergyDensity

LCO is by far the most common being the choice for consumer devices from smartphones to PCs. It is widely manufactured across Asian battery factories and the supply chain is very pervasive…as a result, and despite the use of cobalt (an expensive material), it bears the lowest cost per unit of energy with consumer batteries being priced near $0.50 /Ah, or equivalently, $130/kWh. LCO offers very good energy density and a cycle life often ranging between 500 and 1,500 cycles. From a material standpoint, LCO can potentially catch fire or explode especially if the battery is improperly designed or operated. That was the primary reason for the battery recalls that were frequent some 10 years ago. Proper battery design and safety electronics circuitry have greatly improved the situation and made LCO batteries far safer.

NCA came to prominence with Tesla’s use of the Panasonic 18650 cells in their model S (and the earlier Roadster). It has exceptional energy density — which translates directly to more miles of driving per charge. But NCA has a limited cycle life, often less than 500 cycles. Historically NCA was expensive because of its use of cobalt and limited manufacturing volume. This is rapidly changing with Tesla’s growing volume and the Gigafactory coming online in 2017. It is widely rumored that Tesla’s cost is at or near the figures for LCO, i.e., near $100/kWh at the cell level. It remains to be seen whether Panasonic will replicate these costs for the general market.

NCM sits between LCO and NCA. It has good energy density, better cycle life than NCA (in the range of 1,000 to 2,000 cycles) and is considered inherently less prone to safety hazards than LCO. Its historical usage was in power tools but it has become recently a serious candidate material for automotive applications. In principal, NCM cathodes should be less expensive to manufacture owing to their use of manganese, quite an inexpensive material. The two Korean conglomerates, LG Chem and Samsung SDI, are major advocates and manufacturers of NCM-based batteries.

One of the oldest used cathode materials is LMNO, or sometimes referred to as LMO. The Nissan Leaf battery uses LMNO cathodes. It is safe, reliable with long cycle life, and is relatively inexpensive to manufacture. But it suffers from low energy density especially relative to NCA. If you ever wondered why the Tesla has a far better driving range than the Leaf, the choice of cathode materials is an important part of your answer. It is not widely used outside of Japan.

Finally, we come to lithium iron phosphate, or LFP. Initially invented in North America in the 1990s, it has developed a strong manufacturing base today in China, with the Chinese government extending it significant economic incentives to make China a manufacturing powerhouse for LFP-batteries. LFP has exceptional cycle life, often exceeding 3,000 cycles, and is considered very safe. A major shortcoming of LFP is its reduced energy density: about one third that of LCO, NCA or NCM. It, in principle, should be inexpensive to manufacture. After all, iron and phosphorus are two inexpensive materials. But reality suggests otherwise: the lower energy density requires the use of twice or three times as many cells to build a battery pack with the same capacity as LCO or NCA. As a result, LFP-based batteries cost today 2 or 3x more than equivalent LCO-based battery packs.

By now, you are probably scratching your head and asking: so which one wins? and that is precisely the conundrum for energy storage and to some extent, electric vehicles. Let’s drill deeper.

Energy storage applications pose a few key requirements on the battery: 1) the battery should last 10 years with daily charge and discharge, or in other words, has a cycle life specification of 3,500 cycles or more; 2) it has to be immensely cost-effective, measured both in its upfront capital cost and cost of ownership; in other words, the total cost of owning and operating it over its 10-year life; and 3) it has to be safe.

The first and third requirements are straightforward: they make LFP and NCM favorites. LFP inherently has long cycle life, and NCM, if charged only to about 80% of its maximum capacity also can offer a very long cycle life. So if you wondered why Tesla quietly dropped its 10-kWh PowerWall product,  it is because it is made with NCA cathodes and cannot meet the very long cycle life requirement of daily charging.

The second requirement gets tricky. Right now, neither LFP nor NCM are sufficiently inexpensive to make a very compelling economic case to operators of energy storage systems (ESS) — setting government incentives aside. So the question boils down to which one of them will have a steeper cost reduction curve over time. Such a question naturally creates two camps of followers, each arguing their respective case.

Notice that high energy density does not factor in these requirements, at least not directly. Unlike consumer devices or electric vehicles, ESS seldom have a volume or weight restriction and thus, in principle, can accommodate batteries with lower energy density. The problem, however, is that batteries with lower energy density do not necessarily correspond to lower cost per unit of energy. It actually costs more to manufacture a 3Ah battery using LFP than it does using NCA. This makes energy density a critical factor in the math. Lower energy density equals more needed batteries to assemble a bigger battery pack, and thus more cost. For now, in the battle between LFP and NCM, the jury is still out though my personal opinion is that NCM, by virtue of its higher energy density, has an advantage. On the other hand, China’s uninhibited support for LFP can potentially tip the scale. More later.

Before I adjourn, I would like to rebuke an oft-made statement by some builders of ESS: that they are “battery agnostic.” To them, batteries are a commodity that can be easily interchanged among vendors and suppliers, much like commodity components in a consumer electronic product. I am hoping that the reader gleans from this post the great number of subtleties and complexities involved in the choice of the proper battery in an ESS. The notion of battery-agnostic in this space is utterly misplaced and only points to the illiteracy of the engineers building these ESS. If the battery fires on the 787 Dreamliner can permanently remind us of one lesson, it should be to never underestimate the consequences of neglecting the complexities of the battery. They can be very severe and immensely costly. Battery-agnostic is battery-illiterate.

31May 2016

Every so often, I hear at a dinner gathering the question: “Is there enough lithium?” I have already covered this question in a previous post. The answer is YES. However, an abundance of a resource in the earth’s crust does not mean that its economics will always be favorable. These depend on several factors, in particular the balance or lack thereof between supply and demand.

We know demand is rising. Batteries in consumer devices, electric vehicles, energy storage….But what about the supply? how is lithium mined? where is it mined? which countries or corporations control this supply chain? …etc. Let’s explore.

Let’s start with some basics. Lithium is a metal. With an atomic number of 3, it sits right below hydrogen in the first column of the periodic table. That means it is a very light metal. Also, it means it is an alkali metal, and as such, it is highly reactive and flammable. Lithium is not found in nature in its purest metal form. Instead, it is found in various types of deposits; the most common lithium ores are spodumene and petalite minerals (mined as pegmatite rocks), as well as lithium brine deposits that are essentially underground saline water enriched with dissolved lithium.

Gemstones

Spodumene is a lithium aluminum silicate, with the chemical formula LiAlSi2O6. In its simplest form, it is a yellow or brownish crystal but spodumene includes two gem varieties that are more precious: the pink Kunzite and the rarer green Hiddenite. Petalite, with the chemical formula LiAlSi4O10, often occurs alongside spodumene, though the latter has a higher Li2O content and is considered the more important ore.

Spodumene is found in low concentrations in pegmatite rock deposits (these are rocks, like granite, that formed millions of years ago in the final stages of the crystallization of magma as it cooled down). Spodumene mines follow traditional drill-and-blast methods that expose unweathered zones of the pegmatite rock ore. The spodumene ores containing about 3 to 5% Li2O  are then processed in neighboring plants into high-grade lithium sludge-like concentrates that are then crated for shipment. This is what a refinement or a conversion plant receives for further processing into the final product, either lithium carbonate or lithium hydroxide. The latter is typically used in the manufacture of batteries using NCA or NCM cathodes (like the ones used in the Tesla electric vehicles) whereas lithium carbonate is the preferred material for batteries with LFP cathodes (widely used in China) or LCO cathodes (the typical cathode material in consumer applications). This older post reviews the different types of common cathode materials used in lithium-ion batteries.

Lithium brine deposits are processed in different and far less expensive ways. Much like salt ponds used to make table salt, the brine, often holding a concentration of 200 to 1,400 mg per liter of lithium, is pumped to the surface and stored in a succession of ponds where evaporation results in a higher concentration of lithium salt. This drying process can last 9 to 12 months and yields the required 1 to 2% concentrate of lithium. This is then further refined at chemical plants into the final product, again lithium carbonate or lithium hydroxide. A lithium brine field might require $150-$300 million in capital expenditures, whereas a spodumene mine could easily require 5 to 10 times that amount. But as we will see below, there are advantages to spodumene mines.

The primary mines for spodumene are in Western Australia with the Greenbushes mine being one of the largest. Africa also boasts of additional mines with the Manono-Kitolo mine in the Democratic Republic of Congo being a notable one. There are also known deposits in the US, Canada, Europe (e.g., Austria, Serbia, Russia) either still unmined or in small mining operations. In contrast, brine deposits are largely concentrated in South America, with the Uyuni field in Bolivia and the Atacama field in Chile containing enormous reserves. The provinces of Catamarca, Salta and Jujuy in Argentina also hold significant reserves. The USGS reports that Australian and Chilean mines each produced in 2015 a total of 13,400 and 11,700 metric tons, respectively, accounting for 77% of the world’s production of lithium. An interesting tidbit: The United States government, through its Defense Logistics Agency Strategic Material, held in 2015 a strategic reserve of 150 kg of LCO and 540 kg of NCA battery cathode materials.

GB2-2

The Greenbushes mine as seen from space (Google Earth). The opening of the mine on the right is about 2000 ft (or 600 m).

Known world’s deposits of spodumene tend to be smaller than those of brine deposits, around 10 million tons of lithium for spodumene vs. over 25 million tons of lithium for brine. However, the diverse geographical distribution of spodumene deposits makes pegmatite mining less susceptible to supply chain disruption and a more reliable source of lithium.

Companies mining for lithium have seen their fortunes rise in the past 10 years. In Chile, anecdotally called the Saudi Arabia of lithium, Sociedad Quimica y Minera (SQM) is the largest lithium mining company in the world. It just formed a new joint venture with Western Lithium and Lithium Americas, two smaller US operations. In the US, FMC Corp. and Abermale  Corp. (through its acquisition of Rockwood Lithium) are two large players. In Australia, Talison Lithium is very prominent. These four companies account for about 55% of the world market of lithium, with Chinese chemical companies, such as Ganfeng Lithium and Tianqi,  accounting for an additional 45%.

Given the rising demand for lithium, it is not surprising that the four major Western suppliers all announced significant expansions in their production of lithium carbonate and hydroxide. But as supply tries to keep up with demand, spot prices of lithium ore have hit a near high price in excess of $600 per tonne, up from a long term average near $400 per tonne. Goldman Sachs estimates that these prices translate to a spot-market product price of $20 per kg for lithium hydroxide up from the average $9 per kg that Korean and Japanese battery makers were typically paying. As supply and demand balance out in the coming years, lithium hydroxide pricing will return to more normal levels, but these normal levels could easily be above $10 per kg. In other words, lithium is getting more expensive — but one thing is very likely, as lithium gets more expensive, batteries continue to get commoditized placing serious financial pressures on battery manufacturers.

If you are an investor, however, looking for a pure lithium play, you are a little out of luck. That is because many of the mining companies tend to be diversified chemical conglomerates, and lithium, as a commodity, still does not have futures contracts or swaps, leaving equities as the only play.

02Apr 2016

For a seemingly simple device with only two electrical connections to it, a battery is deceivingly misunderstood by the broad population, especially as batteries are now a common fixture in our technology-laden daily lives. I will highlight in this post five common misconceptions about the lithium-ion battery:

1. STAND ON ONE LEG, EXTEND YOUR ARM, THEN PLUG YOUR CHARGER INTO YOUR DEVICE:

Well, not literally, but the acrobatic move captures the perceived hypersensitivity of the average consumer about past or secret special recipes that can help your battery. One of the silliest one I ever heard was to store the battery in the freezer to extend its life. PLEASE, DO NOT EVER DO THIS! Another silly is to charge the battery once it drops below 50%, or 40% or 30%….Let me be clear, you can use your phone down to zero and recharge it, and it will be just fine.

It is also now common to find apps that will “optimize” your battery. The reality is they do nada! Don’t bother.  Don’t also bother with task managers; no they don’t extend your battery life. Both Android and iOS are fairly sophisticated about managing apps in the background.

Turning off WiFi, GPS and Bluetooth will not extend your battery life, at least not meaningfully. These radios use such little power that turning them off will not give you any noticeable advantage. The fact is that your cellular radio signal (e.g., LTE) and your display (specifically when the screen is on) are the two primary consumers of battery life — and turning these off render your mobile device somewhat useless.

Lastly is the question of “should I charge the battery to 100%?” Well, yes! but you don’t have to if you don’t want to or can’t. In other words, stop thinking about it. The battery is fine whether you charge it to 100% or to 80% or anything else. Sure, for those of you who are battery geeks, yes, you will get more cycle life if the battery is not charged to 100%. But to the average population, you can do whatever you like — your usage is not wrong. These are design specifications that the device manufacturer is thinking about on your behalf.

2. LITHIUM BATTERIES HAVE LONG MEMORIES:

Yes, as long as the memory of a 95-year old suffering from Alzheimers!! Sarcasm aside, lithium ion batteries have zero memory effects. Now, if you are a techie intent on confusing your smartphone or mobile device, here’s a little trick. Keep your device’s battery between 30% and 70% always….this will confuse the “fuel gauge,” that little battery monitor that tells you how much juice you have left. The battery will be just fine but the fuel gauge will not report accurately. Every so often, the fuel gauge needs to hit close to zero and 100% to know what these levels truly are, otherwise the fuel gauge will not accurately report the amount of battery percentage. This is like your gas gauge in your car going kaput…it does not mean that the battery has memory or other deficiencies. Should you suspect that your fuel gauge is confused, charge your phone to 100% and discharge it down to 10% a few times. That is sufficient to recalibrate the gauge.

3. WE NEED NEW BATTERY CHEMISTRIES — THE PRESENT ONES ARE NO GOOD:

This one garners a lot of media interest. Every time a research lab makes a new discovery, it is headline news and makes prime time TV. The reality is that the path from discovery in the lab to commercial deployment is extremely rocky. There have been dozens such discoveries in the past 5 – 10 years, yet virtually none have made it into wide commercial deployment. History tells us it takes over $1 billion and about 10 years for a new material to begin its slow commercial adoption cycle….and for now, the pipeline is rather thin. Additionally, present lithium ion batteries continue to improve. Granted, it is not very fast progress, but there is progress that is sufficient to make great products….just think that current battery technology is powering some great electric vehicles.

Let me be more specific. Present-day lithium ion batteries are achieving over 600 Wh/l in energy density — that is nearly 10x what lead acid batteries can deliver. This is enough to put 3,000 mAh in your smartphone (sufficient for a full day of use), and 60  kWh in your electrical car (enough for 200 – 250 miles of driving range). With the proper control systems and intelligence, a mobile device battery can last 2 years or more, and an electric vehicle battery can last 10 years. Does it mean we stop here? of course not, but this sense of urgency to develop new materials or chemistries is rather misplaced. Instead, we need to keep optimizing the present batteries materials and chemistries. Just reflect on how silicon as a semiconductor material was challenged by other candidate materials in the 1980s and 1990s (do you remember Gallium Arsenide), only for it to continue its steady progress and become an amazing material platform for modern computation and communication.

4. LITHIUM-ION BATTERIES ARE EXPENSIVE:

What made silicon the king of semiconductor materials is its amazing cost curve, i.e., decreasing cost per performance, aka Moore’s law. Now, lithium ion batteries don’t have an equivalent to Moore’s law, but, the cost of making lithium ion batteries is dropping fast to the point they are rapidly becoming commoditized. A battery for a smartphone costs the device OEM somewhere between $1.50 and $3.00, hardly a limiting factor for making great mobile devices. GM and Tesla Motors have widely advertised that their battery manufacturing costs are approaching $100 /kWh. In other words, a battery with sufficient capacity to drive 200 miles (i.e., 50 to 60 kWh) has a manufacturing cost of $5,000 to $6,000 (excluding the electronics)…with continued room for further cost reduction. It’s not yet ready to compete with inexpensive cars with gas engines, but it sure is very competitive with mid-range luxury vehicles. If you are in the market for a BMW 3-series or equivalent, I bet you are keeping an eye on the new Tesla Model 3. Tesla Motors pre-sold nearly 200,000 Model 3 electric vehicles in the 24 hours after its announcement.  This performance at a competitive price is what makes the present lithium ion batteries (with their present materials) attractive and dominant especially vis-a-vis potentially promising or threatening new chemistries or new materials.

5. LITHIUM-ION BATTERIES ARE UNSAFE:

Why do we not worry about the immense flammability of gasoline in our vehicles? Isn’t combustion the most essential mechanism of gas-driven cars? Yet, we feel very safe in these cars. Car fires are seldom headline news. That’s because the safety of traditional combustion engine cars has evolved immensely in the past decades. For example, gas tanks are insulated and protected in the event of a car crash.

Yes, lithium is flammable under certain but well known conditions. But the safety of lithium ion batteries can be observed as religiously as car makers observe the safety of combustion engines. It is quite likely that some isolated accidents or battery recalls may occur in the future as lithium ion batteries are deployed even wider than they are today. In mobile devices, the track record on safety has been very good, certainly since the battery industry had to manage the safety recalls at the turn of the century. Is there room for progress and can we achieve an exceptional safety record with lithium ion batteries? Absolutely yes. There are no inherent reasons why it cannot be achieved, albeit it will take time, just like the automotive and airline industries have continuously improved the safety of their products.