Page View:
Site View (Blog Template):
« Previous
Next »
August 23, 2016

MAKING SENSE OF 100 KWH

Electric Vehicles
Energy Storage
Nadim Maluf

Tesla Motors announced today upgraded versions of the Model S and X boasting 100 kWh battery packs, up from 90 kWh used in their earlier top-of-the-line electric vehicles. One hundred kilowatt-hours sounds like a lot, and it is, but I bet that many readers don’t have an intuitive sense of this amount of energy. This is what this post is for.

First, a kilowatt-hour is a unit of energy, not power, and is most commonly used in electricity. To put it in perspective, an average home in California consumes about 20 kWh of electrical energy per day, so this 100-kWh fully-charged Tesla battery would cover this home’s needs for about 5 days.  Now that’s great if you like to go off-grid.

A Nissan Leaf has a battery with a capacity of 30 kWh and has a driving range of approximately 107 miles (172 km). If the Nissan Leaf were to have its battery upgraded to 100 kWh, then its range would increase to 350 miles, or about what you get from your average gasoline-engine car. That would be real nice!

100kWh is also equal to 341,000 Btu, that is if you like to use the British system of units. At about 10,000 Btu to run a home-sized air conditioning unit, this battery will provide you 34 hours of uninterrupted cool air. It it also equal to 3.4 US Therms (each Therm is equal to 100 cubic feet of natural gas), sufficient to heat a California home in the winter for about 4 days.

Now let’s get a little more creative in this comparison exercise. This high amount of energy can be quite explosive if not designed and operated properly and safely; 100 kWh is the same amount of energy delivered in 86 kg (190 lbs) of TNT….enough to level an entire building.

On a more cheerful note, this battery packs the equivalent energy of 86,000 kilocalories, or what an average human consumes in food over 43 days!

Yet as big as this figure sounds, and it is big, only 3 gallons of gasoline (11 liters) pack the same amount of energy. Whereas the Tesla battery weighs about 1300 lbs (590 kg), 3 gallons of gasoline weigh a mere 18 lbs (8 kg). This illustrates the concept of energy density: a lithium-ion battery is 74X less dense than gasoline.

To view the blog content,
please fill out the form below.

Error

Error

Error

Error

Error

Error

Thank you! Your submission has been received. Now you can be able to view all of our exclusive blog contents using your email address.
Oops! Something went wrong while submitting the form.

Learn more about Qnovo

Want to be a part of the electrification revolution? For a more intelligent and resilient technological future, this is your destination.
Learn More